О.Ф. БРЫКСИНА 1 , Е.П. КРУПОДЕРОВА 2

¹ Самарский государственный социально-педагогический университет, г. Самара, Российская Федерация ²Нижегородский государственный педагогический университет имени Козьмы Минина (Мининский университет), Нижний Новгород, Российская Федерация

УПРАВЛЕНИЕ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММОЙ В УСЛОВИЯХ ИНФОМАЦИОННО-ОБРАЗОВАТЕЛЬНОЙ СРЕДЫ НА БАЗЕ ОБЛАЧНЫХ ТЕХНОЛОГИЙ

Аннотация. В статье обоснованы преимущества построения информационнообразовательной среды основной профессиональной образовательной программы на базе технологий. Универсальным инструментом построения информационнообразовательной среды является разработанный компанией Google пакет сервисов Google Аррѕ для образования, позволяющий организовать эффективное взаимодействие всех участников образовательного процесса, спланировать совместную деятельность, грамотно распределить ресурсы и обеспечить необходимыми инструментами решение различных учебных задач. Приведены примеры использования различных Google-сервисов в организации совместной деятельности преподавателей кафедры прикладной информатики и технологий образовании Нижегородского В государственного педагогического университета имени Козьмы Минина для повышения эффективности реализации основной профессиональной образовательной программы по направлению «Информационные системы И технологии». Ядром информационнообразовательной среды ОПОП является Google-сайт, в который интегрированы различные сервисы Google и приложения Google Apps.

Ключевые слова: информационно-образовательная среда, основная профессиональная образовательная программа, сетевое сотрудничество, облачные технологии, Google Apps.

O.F. BRYKSINA¹, E.P. KRUPODEROVA²

¹Samara State Social and Pedagogical University, Samara, Russian Federation

MANAGEMENT BASIC PROFESSIONAL EDUCATIONAL PROGRAM IN THE CONDITIONS OF INFORMATION AND EDUCATIONAL ENVIRONMENT BASED ON CLOUD TECHNOLOGIES

Abstract. The article substantiates the advantages of building information-educational environment of the basic professional educational program based on cloud technologies. Universal tool for building information-educational environment is Google Apps for Education services, which allows to organize the effective cooperation of all participants of the educational process, to plan collaborative activities, properly allocate resources and provide the solution of various learning tasks by necessary tools. Examples of using various Google-services in the organization of the collaborative activities of teachers of the department of applied informatics and information technologies in education of the Minin Nizhny Novgorod State Pedagogical University to improve implementation of the basic professional educational

²Minin Nizhny Novgorod State Pedagogical University, Nizhny Novgorod, Russian Federation

program in the direction of preparation "Information systems and technology". The core of the informational and educational environment of the basic professional educational program is Google-site that integrates different Google services and Google Apps applications.

Keywords: information-educational environment, basic professional educational program, networking cooperation, Cloud Computing, Google Apps.

Необходимым условием конкурентоспособности вуза является качество предоставляемых услуг, что зависит от качества реализуемых основных профессиональных образовательных программ (ОПОП). ОПОП разрабатывается выпускающей кафедрой на основе Федерального государственного образовательного стандарта по соответствующему направлению подготовки с учетом потребностей регионального рынка труда.

В соответствии с поручением Президента РФ ФГОС высшего образования должны быть актуализированы на основе разработанных и утвержденных профессиональных стандартов [9]. Эффективность управления основной профессиональной образовательной программой в условиях модернизации высшего образования обсуждается в [11].

Для каждой кафедры вуза работа над качеством ОПОП заключается в организации работы профессорско-преподавательского состава над разработкой рабочих программ дисциплин и модулей, отвечающих современным требованиям; формированием фондов инновационных оценочных средств; согласованием требований профессиональных стандартов и ФГОС высшего образования; использованием современных образовательных технологий для достижения требуемых образовательных результатов; реализацией ОПОП в электронной среде вуза; привлечением работодателей к разработке и реализации ОПОП; улучшением ресурсного обеспечения; повышением профессионализма преподавателей, их участием в научнометодической деятельности.

Актуальной является проблема информационного сопровождения управления основной профессиональной образовательной программой в рамках информационно-образовательной среды вуза и кафедры. Информационно-образовательная среда (ИОС) — это системно организованная совокупность информационного, технического, учебно-методического обеспечения, неразрывно связанная с человеком как субъектом образования [2]. Основной целью построения информационно-образовательной среды вуза является создание условий для повышения качества обучения, доступности образования, его открытости. Проблеме построения ИОС вуза посвящены многочисленные исследования [2, 3, 7, 14].

В настоящий момент в российских вузах используются такие программные среды для реализации ИОС, как системы «Moodle», «WebCT», «Sakai», «Сетевой город. Образование», «1 С: Предприятие 8» и другие, интегрирующие сервисы для автоматизации процессов создания учебных материалов; доступа к ним; сбора, накопления и статистической обработки информации об участниках образовательного процесса; ведения электронного документооборота. Данные системы имеют несомненные достоинства, но они не всегда оказываются удобными преподавателям и студентам, прежде всего, из-за ограниченности возможностей коммуникации субъектов с учетом идеологии сетевого сообщества; затрудненной реализации совместной деятельности обучающихся.

Альтернативным решением построения ИОС вузом, кафедрой, преподавателями и студентами является использование облачных технологий. Согласно рекомендациям Национального института стандартов и технологий (NIST), выпущенным в сентябре 2011

года, облачные вычисления — информационно-технологическая концепция, подразумевающая обеспечение повсеместного и удобного сетевого доступа по требованию к общему пулу конфигурируемых вычислительных ресурсов, которые могут быть оперативно предоставлены и освобождены с минимальными эксплуатационными затратами или обращениями к провайдеру [19]. Сейчас облачные технологии развиваются с огромной скоростью и неуклонно завоевывают популярность у пользователей всего мира. Оправдаются ли прогнозы аналитиков [18] по поводу ключевой роли облачных технологий в будущем мирового ИТ-рынка или нет, покажет время. Но уже сегодня облачные вычисления это не просто интересный сервис, а прочно закрепившаяся, полезная, приносящая выгоду, в т.ч. и в образовании, технология.

В [1, 12, 14, 20] обсуждаются преимущества построения информационнообразовательных сред на основе облачных технологий. Для информационных сред кафедр и дисциплин — это, прежде всего, организация эффективного сетевого сотрудничества преподавателей и студентов.

Универсальным инструментом построения информационно-образовательной среды является разработанный компанией Google пакет сервисов Google Apps для образования, позволяющий организовать эффективное взаимодействие всех участников образовательного процесса, спланировать совместную деятельность, грамотно распределить ресурсы и обеспечить необходимыми инструментами решение любых учебных задач. Выбор пакета Google Apps сегодня сделали многие образовательные организации как в России, так и за рубежом. Такой выбор сделан и кафедрой прикладной информатики и информационных технологий в образовании Нижегородского государственного педагогического университета имени Козьмы Минина.

Развертывание в образовательном учреждении информационной среды на базе Google Apps — серьезное и ответственное решение. Авторы монографии [16] называют следующие этапы этого процесса:

- планомерное улучшение ИКТ-оснащенности учреждения;
- рост компетентности педагогов в области использования сетевых сервисов при обучении;
- наличие в коллективе людей, которые могли бы руководить процессом внедрения Google Apps, выступив администраторами домена.

Такие условия на кафедре прикладной информатики и информационных технологий в образовании НГПУ им. К. Минина сложились, и Google Apps был развернут.

ИОС профессиональной образовательной 09.03.02 основной программы «Информационные системы и технологии» [15] является подсистемой информационнообразовательной среды кафедры. Ее функции: совместное ведение различных баз данных (например, выпускников и работодателей); обеспечение постоянного новостного информирования участников взаимодействия; совместная сетевая деятельность разработкой рабочих программ и модулей, дисциплин и практик, фондов оценочных средств, учебно-методических комплексов; подготовка совместных онлайн-мероприятий; внутренняя экспертиза ОПОП; обеспечение обмена мнениями по разным вопросам.

На рисунке 1 представлена структура информационно-образовательной среды ОПОП 09.03.02 «Информационные системы и технологии».

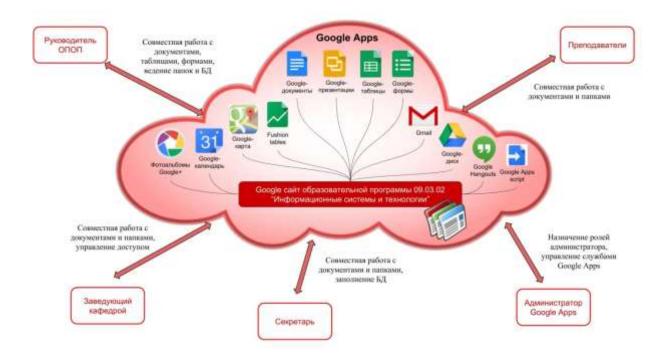


Рисунок 1 – Структура информационно-образовательной среды ОПОП

Для сетевого сотрудничества всех преподавателей кафедры в рамках ОПОП в облаке Google Apps на Google-диске организованы папки с совместным доступом, где размещаются рабочие программы модулей и дисциплин, фонды оценочных средств, рейтинг-планы, учебно-методические комплексы, отчеты по научной деятельности и многое другое.

С помощью Google-документов и Google-таблиц можно организовать совместную деятельность по планированию работы в рамках ОПОП, сбору различных данных, подготовке отчетов; проводить «мозговые штурмы»; контроль и мониторинг. Google-формы позволяют организовать различные опросы мнений, установить быструю обратную связь. Календарь Google — это, прежде всего, веб-инструмент управления и планирования. Примеры использования: расписание занятий, консультаций, экзаменов; календари конференций, олимпиад, проектов, конкурсов, других различных мероприятий.

Группы Google – инструмент управления и групповой работы на основе модерируемых форумов и списков рассылок. Объединение в группы нужно для совместной работы над отдельными проблемами, проектами; для проведения «мозговых штурмов»; для подготовки к конкурсам, конференциям, олимпиадам, заседаниям кафедр; для общения и консультирования; для самовыражения.

Видеосервис YouTube совмещает видеохостинг пользовательских видеороликов и поисковую систему по ним. Может использоваться для создания обучающих видео; размещения видеонаблюдений, лабораторных экспериментов, видеоинтервью, видеопрезентаций и др. Основное достоинство сервиса YouTube в домене Google Apps состоит в том, что он позволяет создать YouTube-канал, на который будут выложены материалы преподавателей и студентов.

Сервис Сайты Google – это конструктор сайтов. Возможно добавлять на сайт самую разнообразную информацию – календари, документы, презентации, различные гаджеты; определить параметры доступа к сайту. Может использоваться для создания сайтов

дисциплин, научных обществ, портфолио преподавателей и студентов, для аккумулирования педагогического опыта, организации дистанционного обучения. В проектной деятельности можно использовать для подготовки совместных энциклопедических статей, научных докладов, отчетов о проделанной работе, для представления портфолио проектов.

Заведующий кафедрой и руководитель основной профессиональной образовательной программы принимают решение, какой доступ и к каким документам открывать. К каждому документу может быть настроен соответствующий доступ: по чтению, комментированию или редактированию. Доступ может быть дан только участникам данной ОПОП, а может – и внешним пользователям. Предоставление коллективного доступа к папкам с учебнометодическими материалами позволяет реализовать междисциплинарный подход, организовать взаимооценивание, сотрудничество, обмен педагогическим опытом, провести внутреннюю экспертизу эффективности ОПОП. Кроме сервисов Google в системе могут использоваться и ресурсы других разработчиков-партнеров Google.

Ядром информационно-образовательной среды ОПОП является Google-сайт, в который интегрированы различные сервисы Google и приложения Google Apps, такие как: базы данных Google Fusion Tables, Google-календарь, Google-карта, Google-документы, Google-группы, Google-презентации и многое другое. С помощью сайта преподаватели в рамках ОПОП 09.03.02 «Информационные системы и технологии» имеют возможность совместно работать в этих сервисах, а также получать и добавлять информацию на Googleсайт. Google-сайт поддержки основной профессиональной образовательной программы содержит такие страницы, как «О программе», «Особенности программы», «Новости», «Календарь событий», «Кадровый состав», «Расписание занятий», «Фотогалерея», «Наши партнеры», «Наши выпускники», «Нормативные документы», «Учебный план», «Матрицы компетенций», «Рабочие программы дисциплин», «Рейтинг-планы», «Фонды оценочных «Государственная итоговая аттестация», средств», «Учебно-методические комплексы», «Универсальный бакалавриат», «Модульная ОПОП», «Научная деятельность» (с подстраницами «Конференции», «Публикации преподавателей», «НИРС»), «Профориентационная деятельность», «Обратная связь».

Google-сайт ОПОП размещен в Интернете по адресу: goo.gl/FerdmK. Главная страница сайта представлена на рисунке 2. На главной странице указана миссия образовательной программы, представлена презентация ОПОП.

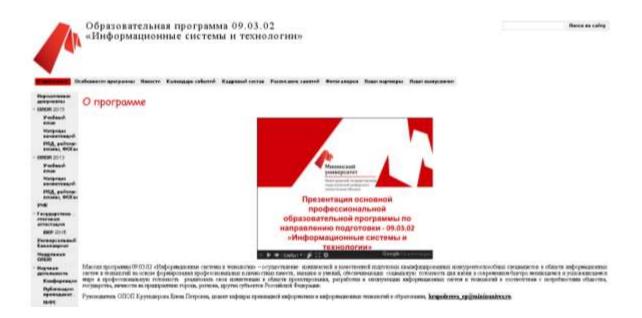


Рисунок 2 – Главная страница сайта ОПОП

Страница «Особенности программы» содержит описание основной профессиональной образовательной программы для направления подготовки 09.03.02 «Информационные системы и технологии».

На странице «Новости» собираются новости, происходящие в рамках образовательной программы. Руководитель ОПОП информирует преподавателей о планах, графиках, предстоящих мероприятиях.

На странице «Календарь событий» размещен Google-календарь. В нем показаны события, связанные с работой преподавателей по данной ОПОП. При нажатии на мероприятие появляется краткая информация о нем, дата, время и место проведения. Также можно добавлять и корректировать события.

Страница «РПД, рейтинг-планы, ФОС» (рисунок 3) предоставляет доступ к папкам по дисциплинам с соответствующими документами. В эти папки каждый преподаватель самостоятельно складывает свои рабочие программы.

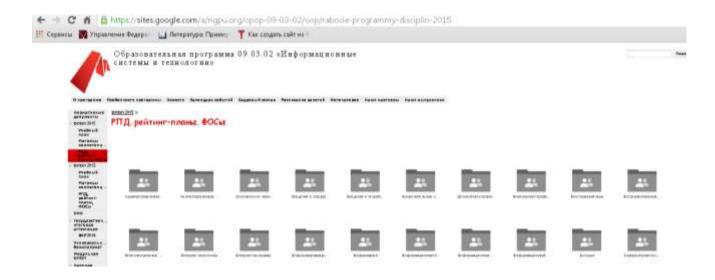


Рисунок 3 – Страница сайта «Рабочие программы дисциплин»

На странице «Публикации преподавателей» размещена база данных Google Fusion Tables. Можно редактировать, добавлять, фильтровать информацию. На странице «Наши выпускники» размещена Google-карта. На ней показаны места работы выпускников.

Одной из важных задач, решаемых совместными усилиями преподавателей в рамках информационно-образовательной среды ОПОП, является работа над формулированием образовательных результатов модулей, которые основаны на согласовании трудовых действий, сформулированных в профессиональных стандартах специалистов (для бакалавров направления подготовки 09.03.02 «Информационные системы и технологии» — это профессиональный стандарт «Специалиста по информационным системам» [10]) и ФГОС высшего образования [15]. Такая задача решается с помощью различных «мозговых штурмов» в Google-таблицах. Для обмена мнениями по разным вопросам эффективной работы над реализацией ОПОП на сайте создана страница «Обмен мнениями».

рамках ОПОП МОГУТ формироваться предметные информационнообразовательные среды. Данный опыт описан в статье [6]. Авторами обоснованы возможности использования сетевых сервисов для формирования общекультурных, общепрофессиональных и профессиональных компетенций бакалавров направления подготовки «Информационные системы «Информатика», технологии» рамках таких дисциплин, как «Мультимедиатехнологии», «Интернет-технологии» и др. Облачные технологии могут использоваться также для организации самостоятельной деятельности студентов, для сетевого сотрудничества в рамках научно-исследовательской деятельности, внеаудиторной работы.

Использование облачных технологий полезно при использовании различных педагогических технологий, но наиболее эффективным является их применение при использовании проектного метода. Проектный метод способствует развитию самостоятельности обучающихся, всех сфер их личностей. Студенты учатся пользоваться приобретенными знаниями для решения познавательных и практических задач; приобретают коммуникативные умения, работая в различных группах; развивают у себя исследовательские умения. А информационнообразовательная среда ОПОП, дисциплины, построенная на базе облачных технологий, обеспечивает для этого необходимые организационно-педагогические условия.

Возможностям применения облачных технологий для организации проектной деятельности посвящены работы [4, 5, 8, 13, 17]. При поиске и анализе проблем, выдвижении гипотез, формулировке целей исследования, организации сбора и обработки информации, оформлении результатов работ студенты могут пользоваться документами и таблицами совместного редактирования, ментальными картами в режиме онлайн, инструментами визуального ранжирования, SWOT-анализом проблем и другими средствами онлайнвизуализации. Можно организовать видеозаписи наблюдений, экспериментов, интервью, а затем разместить их на https://www.youtube.com. Для различных социологических опросов следует организовать онлайн-анкетирование. Эффективна совместная работа с Google-картами, моделирование в таблицах совместного редактирования, проведение видеовстреч Hangouts, создание Google-сообществ. Эффективно ведение сетевых портфолио проекта, их анализ.

Для организации проектной деятельности студентов следует создать группы Google, сформулировать темы форума для обсуждения хода исследования, сделать ссылки на Google-Календарь с ключевыми датами проекта и на документы Google, в которых обсуждаются идеи проекта.

Удобным средством в проектной деятельности является система персонального поиска Google. Можно подготовить и настроить личную поисковую машину, ориентированную на тему своего проекта. Это особенно актуально, когда необходимо ограничить зону или настроить фильтрацию контента.

Обмен мгновенными сообщениями и голосовое общение в Google Talk удобно использовать как средство решения сиюминутных вопросов, инструмент для индивидуальных консультаций участников проекта. Blogger — удобное средство для организации рефлексии, обсуждения возникающих вопросов, обмена мнениями.

Рассмотрим, как можно использовать для формирования некоторых профессиональных компетенций бакалавров облачные технологии Google. Например, компетенция ПК-1 — способность проводить предпроектное обследование объекта проектирования, системный анализ предметной области, их взаимосвязей. Данная компетенция формируется в следующих предметах: «Моделирование систем», «Теория информационных процессов и систем», «Управление данными», «Введение в теорию информационного дизайна», на производственной практике.

Выполняя системный анализ предметной области, предпроектное обследование объекта, студенты могут использовать для совместного обсуждения Google-группы, Google-таблицы, Google-документы. Отчет об обследовании они могут готовить совместно с помощью Google-презентаций, Google-сайтов. Возможна подготовка фотоотчетов в альбомах Picasa, размещение видеоотчета на YouTube. Необходимые данные для проектирования информационных систем студенты могут хранить в Google-таблицах, в базе данных Google Fusion Tables.

Разрабатывать информационно-логическую, функциональную и объектноориентированную модели информационной системы студенты могут совместно с использованием Google-рисунков. Обсуждение своих решений студенты могут вести в блогах.

При совместной проектной деятельности студенты могут использовать Google-календарь – сервис для планирования встреч, событий, дел с привязкой к календарю. Можно задавать время встречи, повторения, напоминания, приглашать других участников (им высылается приглашение по электронной почте). Календарь умеет отправлять напоминания о событиях по e-mail и через SMS. Одно из ключевых преимуществ – возможность совместного использования календаря.

Построение информационно-образовательной среды ОПОП на базе облачных технологий является весьма эффективным. Это связано как с реализацией компетентностного подхода в сфере высшего образования, так и с развитием сетевых технологий, постоянным появлением новых сервисов, позволяющих организовать продуктивную совместную деятельность преподавателей и студентов с целью повышения качества реализации основных профессиональных образовательных программ.

Внедрение приложений Google Apps, построенных на основе облачных технологий самого современного уровня, позволяет повысить надежность передачи данных (электронная почта, текстовые мгновенные сообщения, видео), организовать совместную работу над документами, централизованно планировать деятельность вуза, кафедры, ОПОП на основе общих календарей. В результате внедрения данных новшеств в вузе исчезают проблемы с доставкой почты и спамом, расширяются возможности получения сотрудниками актуальной корпоративной информации в любой точке земного шара.

Современные компьютерные технологии позволяют студентам и преподавателям использовать для общения и работы несколько устройств: ноутбуки, компьютеры, смартфоны, мобильные телефоны и т.д. Сервисы поддерживаются самыми разными устройствами, поэтому являются общедоступной и универсальной IT-технологией для работы в образовательной среде.

ЛИТЕРАТУРА

- 1. Брыксина О.Ф. Создание открытого образовательного пространства на основе облачных технологий // Поволжский педагогический вестник. 2014. №2(3). С. 19-22.
- 2. Иванова Е.О., Осмоловская И.М. Теория обучения в информационном обществе. М.: Просвещение, 2011. 190 с.
- 3. Камерилова Г.С., Прохорова И.В., Агеева Е.П., Баталова Э.Н. Информационнообразовательная среда вуза как средство реализации информационного подхода в образовании //Вестник Мининского университета. 2015. №4(12). С.16.
- 4. Канянина Т.И., Степанова С.Ю., Шевцова Л.А. Сервисы Веб 2.0 как технологическая основа сетевого проекта // Современные исследования социальных проблем (электронный научный журнал). 2014. №12(44). С. 125-144.
- 5. Круподерова Е.П., Короповская В.П. Использование социальных сервисов для формирования ИКТ-компетентности студентов // Наука и школа. 2010. №4. С. 19-21.
- 6. Круподерова Е.П., Калиняк Т.И. Сетевые сервисы для построения информационнокоммуникационной предметной среды // Проблемы современного педагогического образования. 2016. №51-3. С. 144-150.
- 7. Круподерова К.Р. Роль сетевого информационно-творческого образовательного пространства в формировании общекультурных компетенций студентов // Политические, экономические и социокультурные аспекты регионального управления на Европейском Севере: материалы итоговой (тринадцатой) Всероссийской научно-практической конференции ГОУ ВО КРАГСиУ. Коми республиканская академия государственной службы и управления. Сыктывкар, 2014. С. 54-57.
- 8. Круподерова К.Р. Патриотическое воспитание молодежи через сетевую проектную деятельность // Вестник Мининского университета. 2014. №1(5). С. 19.

- 9. Поручение Президента России по вопросам повышения качества высшего образования Пр-1148, п.2 от 22 мая 2014 г. [Электронный ресурс]. URL: http://kremlin.ru/acts/assignments/orders/21112 (дата обращения: 08.11.2016).
- 10. Профессиональный стандарт «Специалист по информационным системам», утвержденный приказом Министерства труда и социальной защиты Российской Федерации 18 ноября 2014 г. №896н [Электронный ресурс]. URL: http://www.apkit.ru/committees/education/projects/06.015_Master%20of%20information%20systems.zip (дата обращения: 08.11.2016).
- 11. Самерханова Э.К., Папуткова Г.А., Гришина А.В., Фильченкова И.Ф. Эффективность основной профессиональной образовательной программы в условиях модернизации педагогического образования // Система ценностей современного общества. 2015. №41. С. 174-178.
- 12. Сейдаметова З.С., Аблялимова Э.И., Меджитова Л.М., Сейтвелиева С.Н., Темненко В.А. Облачные технологии и образование. Симферополь: «ДИАЙПИ», 2012. 204 с.
- 13. Тараканова Е.Н., Брыксина О.Ф. ИКТ-компетентность как ключевой компонент профессиональной подготовки современного специалиста // Актуальные задачи современной науки и образования: теоретические и прикладные аспекты: сборник научных трудов по материалам Международной научно-практической конференции. Смоленск, 2015. С. 76-77.
- 14. Стариченко Б.Е., Слепухин А.В. Моделирование компонентов информационной образовательной среды на основе облачных сервисов // Педагогическое образование в России. 2014. №8. С. 128-137.
- 15. Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 09.03.02 «Информационные системы и технологии», утвержденный 12 марта 2015 г., №219 [Электронный ресурс]. URL: http://минобрнауки.рф/документы/5433 (дата обращения: 08.11.2016).
- 16. Ярмахов Б.Б., Рождественская Л.В. Google Apps для образования. СПб.: Питер, 2015. 224 с.
- 17. Samerkhanova E.K., Krupoderova E.P., Krupoderova K.R., Bahtiyarova L.N., Ponachugin A.V. Students' Network Project Activities in the Context of the Information Educational Medium of Higher Education Institution // International journal of environmental & science education. 2016. Vol.1. P.4578-4586.
- 18. IDC veröffentlicht 2016-Prognose für den IT-Markt [Electronic resource]. Available at.: http://news.sap.com/germany/2016/01/04/idc-veroffentlicht-2016-prognose-fur-den-it-markt.
- 19. Peter Mell, Timothy Grance. The NIST Definition of Cloud Computing [Electronic resource]. Available at.: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (дата обращения: 08.11.2016).
- 20. Sclater N. ELearning in the Cloud // International Journal of Virtual and Personal Learning Environments. 2010. Vol. 1. P. 10-19.

REFERENCES

1. Bryksina O.F. Sozdanie otkrytogo obrazovateľ nogo prostranstva na osnove oblachnyh tehnologij [Creating open educational space on the basis of cloud computing]. Povolzhskij pedagogicheskij vestniko 20146 no. 2(3)6 pp. 19-22. (In Russian)

- 2. Ivanova E.O., Osmolovskaja I.M. *Teorija obuchenija v informacionnom obshhestve* [The theory of learning in the information society]. Moscow, Prosveshhenie Publ., 2011. 190 p. (In Russian)
- 3. Kamerilova G.S., Prohorova I.V., Ageeva E.P., Batalova Je.N. *Informacionno-obrazovatel'naja sreda vuza kak sredstvo realizacii informacionnogo podhoda v obrazovanii* [Informational and educational environment of high school as a means of implementation the informational approach in education]. *Vestnik Mininskogo universiteta*, 2015, no. 4(12), pp.16. (In Russian)
- 4. Kanjanina T.I., Stepanova S.Ju., Shevcova L.A. *Servisy Veb 2.0 kak tehnologicheskaja osnova setevogo proekta* [Services Web 2.0 as the technological basis of of network project]. *Sovremennye issledovanija social'nyh problem (jelektronnyj nauchnyj zhurnal)*, 2014, no. 12(44), pp. 125-144. (In Russian)
- 5. Krupoderova E.P., Koropovskaja V.P. *Ispol'zovanie social'nyh servisov dlja formirovanija IKT-kompetentnosti studentov* [The use of social services for the formation of the ICT competence of students]. *Nauka i shkola*, 2010, no. 4, pp. 19-21. (In Russian)
- 6. Krupoderova E.P., Kalinjak T.I. *Setevye servisy dlja postroenija informacionno-kommunikacionnoj predmetnoj sredy* [Network services for building information and communication subject environment]. *Problemy sovremennogo pedagogicheskogo obrazovanija*, 2016, no 51-3, pp. 144-150. (In Russian)
- 7. Krupoderova K.R. *Rol' setevogo informatsionno-tvorcheskogo obrazovatel'nogo prostranstva v formirovanii obshchekul'turnykh kompetentsiy studentov* [The role of the network of information and creative educational environment in the formation of common cultural competence of students]. *Politicheskie, ekonomicheskie i sotsiokul'turnye aspekty regional'nogo upravleniya na Evropeyskom Severe: Materialy Itogovoy (trinadtsatoy) Vserossiyskoy nauchno-prakticheskoy konferentsii GOU VO KRAGSiU.* [Political, economic and sociocultural aspects of regional governance in the European North: Materials of the Final (thirteenth) All-Russian scientific-practical conference SEI HE KRAPSaA]. Komi Republican Academy of Public Service and Administration (Syktyvkar), 2014. Pp. 54-57. (In Russian)
- 8. Krupoderova K.R. *Patrioticheskoe vospitanie molodezhi cherez setevuju proektnuju dejatel'nost'* [Patriotic education of youth through a network project activities]. *Vestnik Mininskogo universiteta*, 2014, no. 1(5), pp. 19. (In Russian)
- 9. Poruchenie Prezidenta Rossii po voprosam povyshenija kachestva vysshego obrazovanija Pr-1148, p.2 ot 22 maja 2014 [Order of the President of Russia on improving the quality of higher education Order-1148, p. 2 of the May 22, 2014.]. Available at: http://kremlin.ru/acts/assignments/orders/21112. (accessed 8.11.2016) (in Russian).
- 10. Professional'nyj standart «Specialist po informacionnym sistemam», utverzhdennyj prikazom Ministerstva truda i social'noj zashhity Rossijskoj Federacii 18 nojabrja 2014. № 896 n. [Professional standard "Specialist in Information Systems", approved by the Ministry of Labor and Social Protection of the Russian Federation at November 18, 2014. no 896 n]. Available at: http://www.apkit.ru/committees/education/projects/06.015 Master% 20of% 20information% 20systems.zip (accessed 8.11.2016) (in Russian).
- 11. Samerhanova Je.K., Paputkova G.A., Grishina A.V., Fil'chenkova I.F. *Jeffektivnost' osnovnoj* professional'noj obrazovatel'noj programmy v uslovijah modernizacii pedagogicheskogo obrazovanija [The effectiveness of the basic professional educational program in conditions of

- modernization of pedagogical education]. *Sistema cennostej sovremennogo obshhestva*, 2015, no. 41, pp. 174-178. (In Russian)
- 12. Sejdametova Z.S., Abljalimova Je.I., Medzhitova L.M., Sejtvelieva S.N., Temnenko V.A. *Oblachnye tehnologii i obrazovanie* [Cloud technology and education]. Simferopol, «DIAJPI» Publ., 2012. 204 p. (In Russian)
- 13. Tarakanova E.N., Bryksina O.F. *IKT-kompetentnost' kak kljuchevoj komponent professional'noj podgotovki sovremennogo specialista* [ICT competence as a key component of of vocational training of modern specialist]. *Aktual'nye zadachi sovremennoj nauki i obrazovanija: teoreticheskie i prikladnye aspekty. Sbornik nauchnyh trudov po materialam Mezhdunarodnoj nauchno-prakticheskoj konferencii* [Actual problems of modern science and education: theoretical and applied aspects: collection of scientific papers on the materials of the International scientific and practical conference]. Smolensk, 2015. Pp. 76-77. (In Russian)
- 14. Starichenko B.E., Slepuhin A.V. *Modelirovanie komponentov informacionnoj obrazovatel'noj sredy na osnove oblachnyh servisov* [Modeling components of information educational environment based on cloud services]. *Pedagogicheskoe obrazovanie v Rossii*, 2014, no. 8, pp. 128-137. (In Russian)
- 15. Federal'nyj gosudarstvennyj obrazovatel'nyj standart vysshego obrazovanija po napravleniju podgotovki 09.03.02 «Informacionnye sistemy i tehnologii», utverzhdennyj 12 marta 2015, № 219 [Federal state educational standard of higher education in the direction of preparation 09.03.02 "Information systems and technologies", approved March 12, 2015, no. 219]. Available at: http://минобрнауки.рф/документы/5433 (accessed 8.11.2016) (in Russian).
- 16. Jarmahov B.B., Rozhdestvenskaja L.V. *Google Apps dlja obrazovanija* [Google Apps for Education]. St. Petersburg, Piter Publ., 2015. 224 p. (In Russian)
- 17. Elvira K. Samerkhanova, Elena P. Krupoderova, Klimentina R. Krupoderova, Lyudmila N. Bahtiyarova, Alexander V. Ponachugin. Students' Network Project Activities in the Context of the Information Educational Medium of Higher Education Institution. International journal of environmental & science education. 2016. Volume 1.Pp.4578-4586.
- 18. IDC veröffentlicht 2016-Prognose für den IT-Markt. (http://news.sap.com/germany/2016/01/04/idc-veroffentlicht-2016-prognose-fur-den-it-markt).
- 19. Peter Mell, Timothy Grance. The NIST Definition of Cloud Computing (NIST Special Publication 800-145). 2011, p.6
- 20. Sclater N. ELearning in the Cloud. International Journal of Virtual and Personal Learning Environments. 2010.Vol 1, pp. 10-19.
- © Брыксина О.Ф., Круподерова Е.П., 2016

ИНФОРМАЦИЯ ОБ АВТОРАХ

Брыксина Ольга Федоровна — кандидат педагогических наук, доцент, заведующая кафедрой ИКТ в образовании, Поволжская государственная социально-гуманитарная академия, г. Самара, Российская Федерация, e-mail: bryksina@gmail.com

Круподерова Елена Петровна — кандидат педагогических наук, доцент, доцент кафедры прикладной информатики и информационных технологий в образовании, Нижегородский государственный педагогический университет имени Козьмы Минина (Мининский университет), Нижний Новгород, Российская Федерация, e-mail: krupoderova@gmail.com.

INFORMATION ABOUT AUTHORS

Bryksina Olga Fyodorovna – candidate of pedagogical sciences., Associate Professor, Head of the Department of Information and Communication Technologies in Education, Samara State Social and Pedagogical University, Samara, Russia, e-mail: bryksina@gmail.com

Krupoderova Elena Petrovna – candidate of pedagogical sciences, Associate Professor of Department of Applied Informatics and Information Technologies in Education, Minin Nizhny Novgorod State Pedagogical University, Nizhny Novgorod, Russian Federation, e-mail: krupoderova@gmail.com.